ENERGY DOUBLER CIRCUMFERENCE - pp colliding

beams considerations

1. Proper orbit length in ED for pp.

Depends on MR energy $T_{\mbox{MR}}$ (ED energy of 1000 GeV is essentially ∞). For colliding beams

$$\frac{\Delta f}{f} = \frac{\Delta \beta}{\beta} - \frac{\Delta L}{L} = 0$$
 L = $2\pi R$ = orbit length
$$\frac{\Delta R}{R} = \frac{\Delta L}{L} = \frac{\Delta \beta}{\Delta} \cong \frac{1}{2^{\gamma} \frac{2}{MR}}$$
 ΔR = average displacement
$$\frac{\Delta p}{p} = \gamma_t^2 \frac{\Delta R}{R} = (18.75)^2 \frac{\Delta R}{R}$$
 Δp = momentum deviation
$$\Delta x_{max} = \eta_{max} \frac{\Delta p}{p} = \eta_{max} \gamma_t^2 \frac{\Delta R}{R} = \frac{5.91 \times (18.75)^2}{1000} \Delta R$$
 = $2.08 \Delta R$
$$\Delta x_{max} = \max \text{ displacement.}$$

$$\frac{T_{MR}}{(\text{Gev})} \frac{\Delta R}{(\text{cm})} \frac{\Delta x_{max}}{(\text{cm})} \frac{\Delta p/p}{(\frac{\phi}{2})}$$
 100
$$4.32 \qquad 8.99 \qquad 1.52$$
 150
$$1.93 \qquad 4.01 \qquad 0.68$$
 200
$$1.09 \qquad 2.27 \qquad 0.38$$
 250
$$0.70 \qquad 1.46 \qquad 0.25$$

2. Conclusion

Build in $\Delta R\sim 1$ cm (ED larger) so that for 200 GeV x 1000 GeV both beams are on center. This way one can probably go down to 150 GeV x 1000 GeV.

For injection from MR to ED one gives the MR beam a $\frac{\Delta p}{p}$ = 0.38% (Δ R \sim 1 cm) before extraction. The beam will then enter the ED on center. Or one can split the difference; namely give the MR beam $\frac{\Delta p}{p}$ = 0.19% before extraction. The beam will then enter the ED with $\frac{\Delta p}{p}$ = -0.19%.

For future stacking injection into ED we give the MR beam $\frac{\Delta p}{p}$ = 0. The beam goes into ED 1 cm off center which is proper for stacking.

